Showing posts with label Grid tied. Show all posts
Showing posts with label Grid tied. Show all posts

Tuesday, August 04, 2009

The Smart Grid and You

If you’re reading this you’re probably someone who takes responsibility for your own future, instead of waiting for the government or someone else to do things for you. Perhaps you’ve already installed solar panels, instead of waiting for substantial rebates or subsidies. You don’t get excited when you hear about a breakthrough, and you’re not waiting for a dramatic price reduction of solar panels. You may not be able to justify the high cost based on the electricity your system produces, but you have no regrets. You have a system that provides an emergency source of electricity to serve when the grid fails, and you have some protection from the inevitable rate increases. And, should you experience a total melt-down of society, you’re better equipped to live a self-sufficient lifestyle than those who don’t have these systems.

As content as you might be with your own efforts, it’s good to see environmentally-beneficial government-supported projects when they do occur. The Smart Grid is a project that recently received significant funding from the Obama Administration, and those of us who already have solar- or wind-power systems will benefit to a greater extent than those who don’t.

The Smart Grid, when implemented, will be a modernization of the current electrical generation and distribution system. The Smart Grid will be an automated network, with a two-way flow of electricity and information. Extensive monitoring will result in a much more efficient system, benefiting electricity providers, as well as consumers. Providers will be better equipped to reduce generation and transmission costs, and consumers will be better prepared to make decisions affecting their use of electricity and control cost. The Smart Grid will have a positive environmental benefit as well.

Monitoring and control will extend beyond the generation and transmission infrastructure. In-home monitoring and control is another characteristic of the Smart Grid. Consumers will have real-time cost information, helping them to manage electricity use in order to save money. Additionally, smart appliances in the home will use this information to automatically reduce energy usage. Use of the cost-saving features built into smart appliances will be voluntary, not mandatory. Users will have the ability to override these cost-saving features if they so desire.

Other characteristics of the Smart Grid are its ability to accept power from solar and wind systems, and to utilize energy storage devices. This should be particularly interesting to those who have solar or wind systems, and to those who plan to purchase an electric vehicle. You may be an electricity provider someday, and you’ll be paid for it.

While some will simply ignore the available information concerning the cost of electricity, others will minimize their use when the cost is high. Doing laundry, running the dishwasher, and vacuuming are all chores that can be done when rates are low. If you have a solar electric system or a wind turbine, you have an additional option; use energy from your system when grid-supplied electricity is expensive, and use grid-supplied electricity when the cost is low. That, of course, is intuitive and many are already doing that. However, there are other strategies that may result in additional savings. For example; consider charging batteries when electric rates are low, and use the stored energy when rates are high. The battery charger could be controlled by a timer, set to be powered-up when rates are low, and to switch off when rates are high. Better yet, the battery charger could be switched on and off via a “Smart Controller”. A Smart Controller would be a device that can switch power to an outlet on and off based on preset electricity rate thresholds. I’m not aware that such a device exists, but it soon will. You’ll need a battery charger, (like the one described here), that will not overcharge your batteries.

Those who’ll benefit most from the Smart Grid will be, no doubt, those who drive Plug-in-Electric-Vehicles (PHEV’s). Most will be charged at night, when electric rates are low. Consider for a moment that you’ll pay about twenty cents per kwh for electricity during periods of peak demand, and less than two cents per kwh when demand is low. (These figures are based on my actual cost for electricity as a participant in a program offered by my provider). While your cost to top off the battery during the day might be as much as 3 dollars, the cost at night could be less than 30 cents. Replacing gasoline with electricity for transportation could result in a savings of $1000.00 each year. At 3 dollars per gallon, cutting gasoline use by one gallon a day would accomplish that. Those who need to charge their PHEV’s during the day, night-shift workers for example, would benefit by installing a PV system.

Some PHEV’s will be connected to the grid during the day, returning excess power to the grid during periods of peak demand. This concept, known as Vehicle-to-Grid (V2G) technology, is another example of an innovation made possible by a Smart Grid implementation that will benefit providers and users of electricity. Theoretically, you could earn money by connecting a PHEV to the grid. If you recharge at night when rates are low, and return power to the grid when rates are high, you might find that the power company owes you money at the end of the month. You’ll not only eliminate your use of gasoline, you could fuel your car at no cost at all. Your actual results will depend on the number of miles you drive each day.

“Ask not what the grid
can do for you. Ask what you can do for the grid – and
prepare to get paid for it!”


Your contribution to the grid, as small as it might be, will be an important part of the Smart Grid. Solar, wind, and V2G systems will increase the number of electricity providers dramatically. The result will be a broad distribution system that is less vulnerable to natural disasters and terrorist attacks. Utilities will have better control of resources, reducing the need to add power plants simply to meet peak demands.

Whether you’re an electricity provider, consumer, or both, you need to be able to measure the flow of electricity to be able to control it. The Smart Grid will provide that capability, and pave the way for the development of tools to better manage electricity. Pilot projects have already shown that Smart Grid technology not only enhances electric grid reliability and reduces outages, but also creates smaller electricity bills for consumers and could alleviate the need for additional infrastructure. The Smart Grid connects consumers to the grid in a way that is beneficial to both. This is the dawn of some pretty interesting innovations.

John

Saturday, May 30, 2009

My Off-Grid Photovoltaic System and This Blog

You might have noticed a decline in the number of posts to this blog since the first of this year. The decline is primarily due to the fact that my off-grid system hasn’t changed much over the past 6 months. I’ve slowed down because I now pretty much have what I want; a system that can meet my basic needs for electricity during a grid power failure, and one that provides enough energy to significantly lower my electric bill. I’ve also added automation to my system, providing additional protection for my batteries while optimizing power output.

I’ll probably never have enough PV-provided electricity to meet all of my needs, but I can get by pretty comfortably most of the time with the system I now have. It’s important to mention that my need for electricity during a grid-power failure varies with each season. Lengthy periods of cold weather provide the greatest challenge. In addition to the electricity needed for lighting, refrigeration, cooking, and communications, I’ll need electricity to keep my home warm. I can easily use up all of my stored energy during extended periods of cloud cover. With that in mind, I plan to add another PV panel this year, and one or more next year. Other than that, I have no other significant upgrade plans. I’ll maintain this slow but steady progress unless I see a dramatic increase in the cost of grid-supplied electricity, or a dramatic decrease in the cost of solar panels. I hope to drive an electric car within the next two years, and I would love to power it with solar. This is not practical now, with PV panels costing $5.00 per watt.

Here is an overview of my system:

Type: Off-grid
PV: 7 X 85, or 595 watts
Batteries: GC2’s wired for 12 volts, 900ah.
Spare Battery Bank: Marine Deep Cycle, 420ah.
Controller: TriStar 60 with meter and remote temperature probe
Inverter: Exeltec 12-volt, 1100-watt pure sine wave
Automation: Morningstar Relay Driver programmed to enable/disable the inverter and an Iota Transfer Switch

When I started installing solar PV, my primary goal was to become more self-sufficient, especially in the event of a major disaster. From time to time I need to remind myself that water and food are much more important than electric lights in the event of such a disaster. That’s why you’ll find so many articles about growing and preserving food in this blogs archives. You’ll also find articles concerning alternative heating, another necessity for surviving in the event of a loss of natural gas and grid-supplied electricity.

I hope that you’ll browse my archives now and then for ideas, and comment. Let’s learn from each other.

John

Monday, December 08, 2008

Smart Appliances and the ZigBee Alliance

Imagine a vending machine that dispenses candy at a low price in the morning, but charges more for the same product in the afternoon. You would tend to make purchases in the morning, wouldn’t you? For those of us who pay for electricity based on demand, the grid is like that vending machine. We take advantage of the price differences by doing laundry, running the dishwasher, and using other appliances during those hours when electric rates are low. We ease up on heating and cooling when electric rates are high.

Although we make an effort to use electricity as efficiently as possible, our appliances don’t always cooperate. My refrigerator, for example, tends to go through its “defrost” cycle when electric rates are high. The energy consumption of my refrigerator while in defrost cycle is three times as high as when the refrigerator is running normally. Short of rewiring my refrigerator for manual defrost, there doesn’t seem to be much I can do about it, but that may soon change. Soon we’ll be able to buy “Smart” appliances. My refrigerator, for example, will no longer switch to “defrost” mode when electricity is expensive. Additionally, temperature settings could be adjusted upward slightly when electric rates are high, and lowered when rates go down. Because these changes will be small, you’ll save money without jeopardizing the contents of your fridge. Signals from the utility company will trigger the setting changes.

Smart appliances do more than cut your electric bill, they also benefit electricity providers. They reduce the peak demand, resulting in less strain on the power grid. With widespread use of smart appliances, slight adjustments to each one would result in a significant demand reduction system wide without a noticeable change at your home.

Most people, I suspect, won’t rush out to buy new appliances just to take advantage of this technology. You’ll probably wait to replace your refrigerator, dishwasher, washing machine, dryer, air-conditioner, and other appliances until a product failure creates a need. The first smart product you might buy, and perhaps the most useful of all, is an “In-Home Display”. This device receives real-time rate and consumption data from your electric meter. Not only will you know the exact cost of electricity at any time of the day, a quick glance at the color-coded display tells you if rates are low, medium, or high. With this device, you’ll know the best time to run the dishwasher and other appliances. You’ll know when it’s advantageous to cut back on the air conditioning a bit.



As useful as the “In-Home Display” shown here is, it lacks one important feature. It doesn’t have the ability to control other devices. If it included that feature you might use the device to perform one or more of the following functions:

Enable a battery charger when electric rates are low.
Enable supplemental heating when electric rates are low.
Pump water when electric rates are low.
Disable non-critical electrical devices when electric rates are high.

Charging batteries while rates are low would provide you with stored energy that could be used when rates are high. Supplemental heating could lower overall heating costs by limiting the amount of time the primary heater runs when rates are high. Water pumping could be enabled when rates are low, minimizing the need to pump water when rates are high.

Smart products, like the ones described here, are built around “ZigBee” technology. ZigBee is a wireless control technology that offers product manufacturers and developers the ability to build reliable, cost effective, low-power wireless control products. The ZigBee Smart Energy Profile was completed in January of 2008. A product achieves ZigBee Certified Product status after successfully passing certification testing. In addition to display units, ZigBee Smart Energy Thermostats are available at the time of this writing, and smart appliances should be available sometime next year. It is important to note that for Smart Energy products to work, you must also have a “smart” electric meter. My meter was installed when I enrolled in Ameren’s Power Smart Pricing program.

This technology will not be limited to communications and appliance control. V2G is another application of ZigBee technology that will someday benefit the consumer as well as the utility provider.

John

About Power Smart Pricing: http://www.powersmartpricing.org/

About the InHomeDisplay: http://www.comverge.com/products/ihd.cfm

Another Display Product: http://www.lsr.com/smartenergy/

A list of ZigBee Smart Energy products currently available: http://electronics.ihs.com/news/2008/zigbee-certifies-smart-energy.htm

About the ZigBee Smart Energy Profile: http://www.industrial-embedded.com/news/db/?10035

Thursday, November 20, 2008

A Note to the President Elect

Since off-grid solar systems and bio-fuel home heating are not exactly mainstream, I often use on-line forums as an opportunity to learn from others. I contribute to those forums when I think that others can benefit from my experiences. On one such forum I noted that I’ve reduced my fossil fuel use by nearly 50% over the past three years, and I mentioned that if everyone would do that the impact would be tremendous. Someone followed my comments with the comment “You should tell the president about that.” I believe the follow-up comment was meant to be sarcastic, but then again it sounded like a good idea. Here is my message to Barak Obama, via his website, change.gov

Dear Mr. President Elect;

Under your leadership I’m confident that our nation is about to experience a period of unprecedented technological growth, and that we will finally begin to address the energy crisis and the climate crisis. The purpose of this message is to suggest ideas that if implemented, will lead to success. First of all, let me tell you about my own work:

My goal is to stop using fossil fuels and to help others do the same. I’ll not use fossil fuel for transportation or home heating, and I’ll stop using electricity generated by coal-fired power plants. I’ll generate my own electricity, and grow my own bio-fuel using farming techniques that do not rely on fossil fuel. I’ll drive electric vehicles. I’ll do all of these things without sacrificing comfort or my quality of life.

I’ve been working toward this goal for nearly three years, and I’ve already cut my fossil fuel use by almost 50%. I share what I learn with others, via my blog: http://solarjohn.blogspot.com My accomplishments have been due to conservation, energy-efficiency improvements, the implementation of solar photovoltaics, and home heating via bio-fuel. If everyone would do what I’ve already done, the impact on the economy and the environment would be staggering. I’ve done these things on a modest budget, and without financial help of any kind. That brings me to my suggestions.

Although grants are available in some states for putting solar panels on public buildings, and organizations like the National Renewable Energy Lab (NREL) in Colorado receive federal funds, I have been unable to find any source of financial assistance for the important work I am doing. While putting solar panels on a few buildings may result in a good photo opportunity, it does little to help reduce our dependence on foreign oil. State and Federal Government spend too little on renewable energy projects, and money is not spent wisely. Please make money available to people like me who are working on worthwhile projects. I’ve accomplished a lot, but just imagine how much more I could do with funding.

Secondly, I respectfully ask that you put engineers and scientists in charge once again. Engineers and scientists gave us an industrial revolution and put a man on the moon, but things are much different today, now that lobbyists and money managers are in charge. We now have a financial crisis on top of other problems. It’s time for new leadership in important government positions.

And finally, make it easier to buy electric cars and make solar panels and other alternative energy products more affordable. With your help, ordinary people like me will show the skeptics that alternative energy can eliminate our dependence on foreign oil. For many of us this is an effort to build a better future for our grandchildren. We are dedicated, and with your help we will succeed. With your help, eliminating oil imports during your administration is possible.

John

Wednesday, August 27, 2008

Design and Build an Off-Grid Solar Electric System

Anyone with a basic understanding of electricity and good mechanical skills can design and build a solar photovoltaic (PV) system. Here, condensed into a few easy steps, is what you need to know.

Overview

There are two basic types of solar PV systems, off-grid and grid-tied. An off-grid system uses batteries, while batteries are optional in a grid-tied system. In this article we’ll be discussing off-grid systems. An off-grid system uses solar photovoltaic (PV) panels to turn sunlight into electricity, and stores that electricity in batteries for later use. Battery charging must be done in a controlled manner to protect them from damage, and for efficiency and safety. The stored energy must be converted to AC voltage in order to power ordinary household appliances.

Building a system large enough to meet your daily needs for electricity can be an expensive project. For most people, reducing the load by improving energy efficiency will be more cost effective than building a system big enough to handle a heavy load. Replacing incandescent lights with compact fluorescent (CFL’s), and upgrading to energy-efficient appliances are a couple of things you can do that will pay off in the long run. Having done that, you’re ready to start the design phase.

Step 1. Determine your daily needs.

List the electrical requirements of each device that you plan to power with the PV system. Example:

A 13-watt bulb in use for 5 hours each day (average) uses 13 watts times 5 hours, or 65 watt/hours per day.

Enter the information for each device into a chart as shown below:


Your total energy needs are the sum of the individual requirements of all devices, or 4985 watt/hours per day in this example. You may choose to build a system to meet all of your needs, or choose instead to build a system to meet a portion of your needs.

Tip: If you don’t know the electrical requirements of a particular appliance or device, an inexpensive Kill-A-Watt meter can help you find out. Click (HERE) for more information.

Step 2. Determine the amount of PV needed.

PV panels are rated in watts. One 100-watt panel produces the same amount of power as two 50-watt panels. If you get 4 hours of sunlight each day, a 100-watt panel is capable of producing 4 times 100, or 400-watt/hours of power daily. The example above lists your needs at almost 5000 watt/hours per day. Dividing 5000 by 400 shows that you’ll need twelve and a half 100-watt panels to meet your daily needs. To make up for system losses, and because you’ll probably want all panels to be the same size, you should go at least 20% bigger, opting for 15 panels. You might want even more panels to compensate for extended periods of cloud cover.

Step 3. Planning your battery bank.

Batteries are rated in amp/hours. Begin by converting watt/hours to amp/hours by dividing watt/hours by 12 (the battery voltage). In this example, the 4985 watt/hours that you need divided by 12 equals about 415 amp/hours. Since discharging batteries beyond 50% of their capacity will shorten their life, you’ll need a battery bank rated at no less than 830 amp/hours (in this example). Additionally, you’ll have to increase the size of your battery bank by about 20% to compensate for conversion losses. Having done that, you should have enough battery capacity to get you by for one full day. Ten 100 amp/hour batteries connected in parallel will do the job in this example, but if you want to compensate for extended periods of cloud cover you’ll need more. In addition to keeping your equipment running in the event of extended cloud cover, over-sizing the battery bank helps to extend the life of the batteries as a result of less-aggressive use.

As you shop for batteries, be sure to select those designed for deep cycle applications, not automotive batteries. Batteries designed for golf-carts, floor scrubbers, and forklifts are all good choices. The most expensive batteries tend to have the longest lifespan. Your bank of batteries will be wired to provide 12, 24, or 48 volts. More about that later.

Step 4. Select an inverter.

An inverter converts the low DC voltage from your battery bank to 120-volts AC. To determine the size of the inverter needed, add up the power requirements of all of the loads that you intend to run simultaneously. The total load in Step 1 was just under 5000-watts, but it’s unlikely that you’ll ever use all of those devices at the same time. You might, however, use the microwave oven and toaster at the same time, a total of 1900 watts. You might also have a few lights on at the same time. In this example, an inverter rated at 2000-watts would just meet your needs.

There are two basic types of inverters, modified sine wave and true sine wave. Modified sine wave inverters are much less expensive, but some equipment may not work well with modified sine waves. Motors may overheat and run at the wrong speed, and sensitive electronic equipment can be damaged. For best results, I highly recommend a true sine wave inverter.

The choice of an inverter will also influence another important design decision. Inverters typically accept an input voltage of 12, 24, or 48 volts. Generally speaking, a 12-volt inverter would be the best choice for a small system, while a 24 or 48 volt inverter would be better for a large system.

Step 5. Select a Charge Controller.

A charge controller efficiently controls the battery charging voltage and current, and keeps the batteries from overcharging. If you choose to build a small system, you need not get an expensive charge controller. A single PV panel can produce no more than 5 to 10 amps of current, and just about any charge controller will be able to handle that. A large PV system may require you to use more than one charge controller, splitting the PV panels into two or more sections. Your charge controller should include a battery temperature probe. The charge controller cannot efficiently charge batteries unless it has a way to compensate for battery temperature.

Unless you have a separate device for monitoring system parameters, you should opt for a charge controller with a digital meter. Most importantly, you’ll want to monitor battery voltage. The ability to monitor PV panel voltage and current is also helpful. Reduced output may alert you to the need to clean the panels, for instance.

The best available charge controllers (suitable for large systems), are able to convert voltage to lower or higher levels. Your PV array, for example, could be wired to provide 48 volts to the charge controller, which is converted to 24 volts in order to match the voltage requirements of the inverter. Operating at voltages greater than 12-volts can cut system losses due to the resistance of the wiring. By increasing voltage you can use thinner, less expensive wire, and cut costs.

Choose a charge controller that best matches the size of your system. For small systems, the charge controller should consume very little current for its operation. Typically, these are PWM (Pulse Width Modulation) controllers. PWM types provide pulses, instead of a steady DC voltage, to the batteries. For large systems the charge controller should have the ability to track PV panel output and adjust to provide the most efficient charging. This is called MPPT, or Maximum Power Point Tracking.

Step 6. Mounting the Solar Panels.

Keep in mind that cool panels operate much more efficiently than hot panels. Mount the panels in a way that allows good air circulation under them. Check my blog of 2/15/2007 for mounting ideas, and information you’ll need to determine the ideal panel orientation for your geographical location. If panels are to be mounted on a pole or roof, a lightning protection device is a good idea. Install that in accordance with the manufacturer’s instructions.

Step 7. Wiring and Safety Considerations.

Be sure to use wire that is large enough to handle the maximum current that will flow through it. Typically, a set of wires from each solar panel terminates in a combiner box or breaker box, and a thicker wire connects the solar panel array to the charge controller. Since the output of each solar panel is usually less than 10 amps, 10 gauge wires can be used from each panel to the combiner box. Battery interconnections and battery-to-inverter wires will need to be much thicker, since the current flow there can be very high. Fuses, breakers, and disconnect switches should be included in your design for safety.

Check with an electrician for the correct type and size of wiring if you’re not sure, and to make sure everything gets done according to code.

The drawing below is a typical wiring scheme for a small off-grid system. Be sure to include safety devices (not shown here):



Adding Functionality

Perhaps you’ve decided to build a system to lower your electric bills, or to serve as an emergency supply of electricity. The system described here will certainly do those things, but it also has its limitations. You may want your system to kick-in automatically in the event of a power failure, perhaps to prevent frozen food from spoiling when you’re not home. The addition of an “Automatic Transfer Switch” will provide that functionality.

You might want to automatically disconnect batteries from the load, perhaps switching to another source of power, when batteries reach a predetermined state of discharge. Check out my blog entry of 2/25/2008 for more information on that topic.

Be sure to consult with a licensed electrician before connecting to your house wiring.

Conclusion

Don’t let a lack of technical training or experience discourage you from building your own PV system. It’s not that complicated. You can build a safe, efficient system with off-the-shelf equipment from numerous sources. Learn as much as you can before you begin, to avoid altering your plans after you’ve purchased equipment. Be especially careful to take good care of your batteries, as they can be easily damaged by abuse. If you plan to start small and add to your system over time, develop a plan that will allow you to do that with as little waste as possible. Since this post has been primarily an overview, check other websites for in-depth information as needed.

Don’t let the cost of system components discourage you from building your own PV system. Start small if you must, but start. The world is changing, and we cannot continue to burn fossil fuels as we currently do. Future generations deserve more from us, and it seems that we cannot rely on politicians to do the right thing. In the words of Charles Darwin:

“It is not the strongest of the species that survives, not the most intelligent, but the one most responsive to change.”

John

Friday, August 15, 2008

Sizing Your Off-Grid Solar Electric System

The average US home consumes about 940kwh of electricity each month. For many, electricity use could be cut in half with a serious conservation effort. But if you had to rely on a small photovoltaic (PV) system could you get by on 120kwh per month?

To get by on less you’ll first need to make sure you’re using electricity as efficiently as possible. Replacing incandescent light bulbs with compact fluorescent (CFL’s) is a good start. You’ll also benefit by eliminating phantom loads and replacing inefficient appliances. I’ve listed many more things you can do in previous posts, so I won’t repeat them here. Check this blog’s archives for that information.

Living (comfortably) off-grid on less than 120kwh of electricity per month (about 4kwh per day) may sound impossible, but you just might be able to do it. Here’s how:

Of the 20 or so 13 watt CFL lights in your home, you might use each (on the average) 1 hour per day. So, 13 times 20 times 1 = 260 watt/hours. Shown below is the total for lights, and a list of other ways you might use this limited supply of electricity.

Lights: 13 watts X 20 hours = 260 watt/hours
Refrigerator: 50 watts (average) X 24 hours = 1200 watt/hours
TV and Cable box: 125 watts X 3 hours = 375 watt/hours
Radio: 5 watts X 6 hours = 30 watt/hours
Fans: 35 watts X 16 hours = 560 watt/hours
Computer and monitor: 120 watts X 2 hours = 240 watt/hours
Microwave oven: 1000 watts X 0.5 hours = 500 watt/hours
Toaster: 900 watts X 0.1 hours = 90 watt/hours
Vacuum Cleaner: 750 watts X .2 hours = 150 watt/hours
Cell Phone Battery Charger: 25 watts X 2 hours = 50 watt/hours
Washing Machine: 500 watts X .25 hours = 125 watt/hours
Iron: 1000 watts X .25 hours = 250 watt/hours

Total: 3930 watt/hours per day

How you use the available electricity will not exactly match my list of course. This is simply an example to show how you might get by on much less electricity than you’re currently using. Off-grid doesn’t have to mean living like a caveman. A small PV system can meet most of your electrical needs, including a limited amount of cooking and climate control. As long as you have other systems in place for heating, cooling, and other high-energy devices, you could live quite comfortably on much less than you currently use.

Why is this important?

Most of us purchase electricity from our local utility company for less than 2% of our household income. Because grid-supplied electricity is inexpensive and convenient, few people have any interest in alternatives at this time. But just as gasoline prices have skyrocketed in the last two years, we’ll soon see the cost of electricity increase dramatically. Most consumers will deal with this by cutting back, but some will choose to disconnect from the grid. A PV system large enough to meet your current electricity requirements may cost 25 to 35 thousand dollars. For most, reducing usage and installing a smaller PV system will be easier and less costly than installing a system big enough to meet current demands for electricity.

What would this smaller PV system cost?

First of all it’s important to understand that a system capable of providing 4kwh of electricity a day will not provide 4kwh on a cloudy/rainy day. Typically, a lack of sunshine prompts the user to either cut back on electricity use that day, or to use another source of electricity during those times, typically a generator. It is also important to understand that we’re discussing an off-grid system, not a grid-tied system. An off-grid system includes the extra expense of batteries, and is not as efficient as a grid-tied system. Your system design might include a battery bank large enough to compensate for a day or two of cloudy conditions.

PV panels produce electricity when the sun strikes them, but are most productive during hours of peak-sunlight, or stated another way, when the sun is almost directly overhead. We’ll do our calculations based on an average of 4 hours of sunlight each day. A 100 watt solar panel can produce 400 watts/hours (100 watts times 4 hours) of power each day. It follows then that to get 4000 watt/hours (4kwh)from the panels each day, you’ll need 1000 watts of PV panels. To make up for system inefficiencies, you should shoot for at least 1200 watts of PV. That would be 12 one hundred watt panels for example. If you shop around, you’ll find solar panels for less than $4.50 per watt, so you’ll spend about $5400.00 for PV panels alone. You’ll also need a charge controller, batteries, an inverter, panel mounting hardware, wire, and safety components. These items can be bought for $2600.00 if you shop around. If you’re not able to do the installation yourself, you might spend another $3000.00 for that, making your total cost about $11,000.00. If this sounds expensive, don’t forget that it eliminates your electric bill. The system could pay for itself in 5 years, or less as electricity prices increase. And since solar panels can be expected to last in excess of 20 years, you’ll be getting many years of low-cost electricity after that.

Using your system:

Your small system may not always keep up with your needs, but you’ll learn techniques to maximize efficiency. Using energy from the sun as it’s generated (instead of storing it in batteries for later use), increases system efficiency greatly. By using the vacuum cleaner, washing machine, and other appliances during peak-sunlight hours you eliminate losses associated with converting, storing, and retrieving energy. Your goal should be to use electricity wisely, ensuring a surplus. That surplus will come in handy when it’s cloudy.

Conclusion:

Having your own power plant means that you’ll not be affected by outages and brown-outs that grid-connected customers often experience. News reports about rate increases will no longer concern you. You’ll feel good knowing that by disconnecting from the grid you’re not contributing to the environmental problems associated with mining and burning coal to produce electricity. By installing your own PV system you’ll be taking an important step toward personal electric transportation, or as a politician might say eliminating your “addiction to oil”. Declining oil supplies will soon usher in the age of electric cars, and it’s not unreasonable to think that someday you’ll be able to drive on free energy from the sun. That’s something to get excited about!

John

Tuesday, July 22, 2008

Future USA

George W has a horrible environmental record as president, but his Texas ranch is off-grid with a variety of renewable energy systems. Although he’s done little to prepare the country for the effects of declining fossil fuel, he hasn’t neglected his own needs. Does he know something about the future that the rest of us don’t? We see skyrocketing gasoline and food prices, but we tend to plan for the future as if we expect things to be pretty much the same as they are today. Are we in a state of denial about our future?

Perhaps we’re all in a state of denial, even large corporations. GM spends an enormous amount of money promoting big cars and trucks, while closing several of its assembly plants due to lack of sales. Shouldn’t they have seen this coming? Why did they let Toyota and Honda take the lead with their fuel-efficient vehicles? GM continues to push it's gas-guzzlers by offering discounts and rebates, even offering to pay a portion of your gas bill. They use slogans like “Let’s Refuel America”. It seems that they’re determined to use up all of the remaining fossil fuel as quickly as possible!

Banks are in trouble, and I wonder why so many of them have been willing to make loans to people who probably won’t be able to keep up with the payments. Again, shouldn’t they have seen this coming? We shouldn’t be shocked when we find ourselves in a society that is much different than the one we live in today. Unlike some car manufacturers and banks, we should see this coming and prepare for it. We already drive less today because of the high cost of gasoline, but we still drive. We’re learning to economize as food prices go up, but we still buy food of course. Today most of us can compensate for rising food and gasoline prices by cutting back here and there, but what will we do if things get worse?

While another terrorist attack could trigger a sudden collapse of our economy, we might suffer more from a gradual decline. If your cost of living outpaces your income long enough, you’re in trouble. You may think that these gloom-and-doom scenarios are unrealistic and choose to do nothing, but if you believe that the worst is yet to come you should prepare as soon as you can. If you wait until things get worse, it will be too late. You’ll be forced to use the renewable energy systems you have in place, not the systems you planned to install someday.

Once you’ve decided to prepare, the next question is “How do I prepare?” How you prepare depends on how you want to live, and on your budget. You might choose to prepare for a total melt-down of society by considering your basic needs, or you might opt for a strategy that attempts to maintain your lifestyle as it was before the melt-down. A reasonable approach would be somewhere in between. Since everyone’s goals and budgets are different, this article is not a one-size-fits-all design guide. Instead, these are some ideas to help you formulate your own plan.

You can probably live as comfortably as you do now, and use half of the resources that you’re currently using, if you’ll simply cut waste. Start by eliminating phantom loads. Put your TV’s, and other items that continue to use power when turned off, on power strips. Get used to powering these items on and off with the power strips on/off switch. Get rid of unnecessary items like hand-lotion warmers. When possible, replace electrical items with mechanical items that serve the same purpose. Alarm clocks, can openers, and doorbells are a few examples. If you haven’t done so already, replace your incandescent light bulbs with compact fluorescents (CFL’s). Replace old and inefficient appliances, especially your refrigerator. Consider energy-saving home improvements, such as adding insulation and replacing inefficient windows and doors. These things not only help to cut your energy costs, they are a logical prerequisite to implementing alternative energy systems in your home. Having done those things you can get by with a smaller photovoltaic (PV) system, but you’re still not fully prepared to deal with a serious energy crisis. Let’s go beyond the basics.

Do you heat and cool your entire house 24/7? You could cut your heating and cooling costs dramatically if you were to heat and cool only the area’s that you’re using. Is a 14’ by 14’ bedroom really necessary? Couldn’t you sleep just as well in a climate-controlled 6’ by 9’ space? Providing climate control to a much smaller space requires less energy, making it possible to get by with a smaller photovoltaic (PV) system. If you have an unused room in your home, perhaps an unfinished basement with a window, you can easily create a living environment that requires little energy. You can be just as comfortable in a small well insulated space, perhaps with the aid of a window air conditioner or an electric blanket, as you are now in your big bedroom. If you’ll make the necessary adjustments you’ll be able to meet your energy needs with a small PV array, instead of covering your entire south-facing roof and spending $25,000.00. I’ve determined that I can meet my own basic needs with as little as 800 watts of PV panels, and a total investment of less than $6000.00. With 4 hours of sunshine, a system that size can generate 3200 watt/hours each day (not taking into account system losses and inefficiencies). A big portion of the energy I produce will be used to keep a small chest freezer running. I’ll also use cfl’s, radio and tv, cell phone charger, microwave oven, and fans. I’ll have limited use of my corn-burning stove or a window air conditioner. I can summarize my minimum needs as shown below:

Mild Weather Energy Requirements: 1220 watt/hours per day

Hot Weather Energy Requirements: 2530 watt/hours per day

Cold Weather Energy Requirements: 2990 watt/hours per day

If I build a system that barely meets my cold weather requirements, I’ll have shortages on cloudy days. I’ll need to cut back at times. But a system designed to meet my cold weather requirements will give me a surplus of electricity during mild and warm weather, allowing me to use other appliances to a greater extent. I’ve learned techniques that help me get the most from a small system. For example; if I place my chest freezer in the coolest portion of the house, it uses less energy for its operation while providing some heat to that area. I don’t run my refrigerator when the power fails; I use an ice-chest instead. My freezer, which is powered by my PV system, provides the ice.

As you make your plans, don’t neglect your basic needs. You’ll need fresh water on an ongoing basis of course. You might want to visit one of the many survivalist websites for information and ideas along those lines.

Since your need for food is an ongoing one, knowing how to grow and preserve vegetables and fruits is a skill that will serve you well. If you’re already a gardener, enlarge your garden. Tomatoes and other veggies are easy to grow, and easy to preserve. By canning your vegetables, you’ll have a supply of food that doesn’t require refrigeration. It’s a good feeling to know that an extended power failure (or a failure of your PV system), won’t ruin a big portion of your emergency food supply.

“Perhaps the day will come when the United States is no longer addicted to imported oil; but that day is still many years off. For now, the reason for America's rapt attention to the security of the Persian Gulf is what it has always been. It's about the oil.” Ted Koppel

Fighting for control of every last drop of oil is the foundation of this administration’s energy policy, and it will not end well. To the extent that we can, let’s not support this policy. Mass acceptance of renewable energy systems by the general public will show our elected officials, and the rest of the world, that we want to do the right thing. We can do it. We should do it. Future generations will appreciate our efforts.

John

Monday, June 23, 2008

Living a Better Life - Post Oil

Did your parents ever scold you for wasting energy? Did they complain when you didn’t close a door or turn off the light when you left a room? I suspect that most of us were chastised on occasion. Some of us might recall a parent saying; “when you’re paying the electric bill, you can leave the lights on as much as you want”.

By contrast, children of the future might be chastised for NOT using electricity. That may sound odd, so let me explain. Photovoltaic (PV) panels generate electricity as long as the sun hits them, but they’re most productive during “peak” sunlight hours. Most of the United States gets peak sunlight, and therefore maximum output from solar panels, for 3 to 5 hours per day. A grid-tied system feeds this energy back into the grid, and it offsets power used at night. On the other hand, the energy produced by an off-grid system is usually stored in batteries. For several reasons, this process is far less efficient than a grid-tied system. However, if the off-grid system output is used to directly power a load, instead of storing and retrieving it, system efficiency increases dramatically. We get the most from an off-grid system by using it during peak sunlight hours, and we should exploit that whenever we can. Chores like washing and drying clothes, pumping water, and preparing food should be done during the day. Using appliances and machinery during the day, and avoiding their use at night, will be common practice in the future. The child who forgets to do his chores during peak sunlight hours may be in for a scolding.

For the past 100 years we’ve gotten used to paying for the electricity we use. It may be hard for some of us to grasp the concept of free electricity, but PV-produced electricity is indeed free. Once we’ve used all we need for charging batteries and powering devices, the rest can be considered free. We can leave lights or appliances on at no cost (except for the wear and tear on the lights and appliances).

Some people believe that civilization will decline as fossil fuels become more expensive, but I believe that we’ll adjust. Learning new habits will be part of that adjustment. The way we use electricity will not be the only change. We’ll still have transportation, but the vehicles that take us from place to place will change dramatically. We’ll still have comfortable homes, but our HVAC systems will be radically different than they are today. The equipment and systems will still be automatic and thermostatically controlled, and we’ll continue to make adjustments to ensure optimization. In other words; our equipment will be different but we’ll use it pretty much the same way we use the equipment of today.

More of us will have gardens in the future, and those who already have gardens will have bigger ones. Gardens not only help offset the rising cost of food, they can be part of our heating and cooling systems. Some already heat their homes with biofuels, and some use “green roofs” to help keep their homes cool.



You might argue that the ideas I’ve presented here represent a more labor-intensive lifestyle than we’re used to, indicating a decline in the quality of life, but I would disagree. While many of these strategies do indeed require more effort, they’ll also keep us more fit and in better health. We’ll benefit from a better quality of food, more exercise, and better air quality. Anyone who’s ever compared a store-bought tomato to one grown in a backyard garden knows what I mean. Tomatoes that have to be shipped a long distance are picked green, and “gassed” to turn them red by the time they show up in the supermarket. They’re rock-hard, and have little flavor. I can only guess that the nutritional and cancer-fighting properties are not what they should be either. And it’s wise to remember that the recent salmonella outbreak linked to tomatoes was a result of industrial agriculture. Shipping fewer vegetables not only means better food, it also means fewer trucks on the road, which reduces fossil fuel use and improves air quality.

When it comes to the future, there are three kinds of people: those who let it happen, those who make it happen, and those who wonder what happened.

John M. Richardson, Jr.


There will be bumps in the road to oil independence. We’ve overreacted to the rapid rise in the price of oil by making ethanol from corn (kernels), when we should be making it from agricultural waste (cellulosic ethanol). But we’ll adjust, and we’ll eventually be living a far better life than we do today. We’ll replace our dirty gasoline-powered cars with non-polluting electric ones. We’ll develop better ways to keep warm in the winter and cool in the summer. We’ll find better ways to heat water. We’ll generate at least a portion of our own electricity. We’ll build communities that allow us to walk or bike to the grocery store and to work. Additional chores will instill a greater sense of responsibility in our children, resulting in far fewer social problems than we have today.

What we need now is for governments to stop making war, stop promoting fossil fuels, and to begin supporting alternative energy in a substantial way and with well thought out plans. Beyond that, we need little help from them. If they’ll just get out of our way and let us use what God has given us, we’ll be fine.

John

Monday, June 16, 2008

Unbelievably Low Electricity Rates

Here’s something you’re not going to believe - electric rates below 1 cent per kilowatt hour (kwh). My electricity provider, Ameren, must have lost its mind! For most of the United States, electric rates are about ten cents per kwh, with many areas paying much more than that.

As a participant in the “PowerSmart Pricing” plan, my electricity rate fluctuates from hour to hour, depending on the demand at the time. Shown below are the rates for June 11th, 2008. Notice that from 2:00am until 4:00am electric rates are below 1 cent, and then slightly more than 1 cent per kwh from 4:00am until 6:00am. The highest cost for the day was just over 11 cents per kwh at 3:00pm.

Date * * * * * * * Hour * * * * Price
2008-06-11 * * * 00 - 01 * * * 0.015520
2008-06-11 * * * 01 - 02 * * * 0.012190
2008-06-11 * * * 02 - 03 * * * 0.009200
2008-06-11 * * * 03 - 04 * * * 0.009380
2008-06-11 * * * 04 - 05 * * * 0.012560
2008-06-11 * * * 05 - 06 * * * 0.013790
2008-06-11 * * * 06 - 07 * * * 0.020730
2008-06-11 * * * 07 - 08 * * * 0.030550
2008-06-11 * * * 08 - 09 * * * 0.042160
2008-06-11 * * * 09 - 10 * * * 0.060670
2008-06-11 * * * 10 - 11 * * * 0.077770
2008-06-11 * * * 11 - 12 * * * 0.091420
2008-06-11 * * * 12 - 13 * * * 0.100440
2008-06-11 * * * 13 - 14 * * * 0.108230
2008-06-11 * * * 14 - 15 * * * 0.111300
2008-06-11 * * * 15 - 16 * * * 0.111880
2008-06-11 * * * 16 - 17 * * * 0.104470
2008-06-11 * * * 17 - 18 * * * 0.095140
2008-06-11 * * * 18 - 19 * * * 0.084570
2008-06-11 * * * 19 - 20 * * * 0.070230
2008-06-11 * * * 20 - 21 * * * 0.084700
2008-06-11 * * * 21 - 22 * * * 0.073010
2008-06-11 * * * 22 - 23 * * * 0.042210
2008-06-11 * * * 23 - 24 * * * 0.027310

As unbelievable as these rates are, I was even more surprised on June 16th when my 3:00am rate dropped to .00207 (two tenths of a cent per kwh).

These low rates won’t last forever. When plug-in electric cars become available, most will be charged at night. This increased demand for electricity will drive up the rates. But for now I’m taking advantage of these exceptionally low nighttime rates by topping off the charge on my batteries while rates are at their lowest, and using the stored energy when rates are higher. My battery charger is on a timer, set to power it up from 1:00am until 5:00am. Load switching is automatic. I’ve also switched most of my laundry chores to late-night. See my previous post for additional details, or my March 15th post.

For information about the Ameren plan, visit the PowerSmart Website.

John

Tuesday, April 15, 2008

The Energy 12-Step Program

When President Kennedy made it America’s goal to put a man on the moon, it happened within ten years. But America is in a technology “funk” today. We have a president who tells us we’re addicted to oil, while at the same time underfunding projects that would help to solve the oil crisis. Instead of developing solutions, our president implies that the American people need a 12-Step program. With that in mind, let’s examine the 12-steps:

Step 1. Admit that we are powerless over oil, and that our lives have become unmanageable.

Absurd! If you believe that you’re powerless over oil, and that you can’t manage your own life, you’ll never accomplish anything.

Step 2. Come to believe that a power greater than yourself can restore you to sanity.

Ridiculous! You’re not insane.

Step 3. Make a decision to turn your will and your life over to the care of God.

Bolderdash! Don’t expect God to solve your problems. Solve problems with the help of God.

Step 4. Make a searching and moral inventory of yourself.

Finally, some good advice! Applying your knowledge and skills to this problem is morally appropriate.

Step 5. Admit to God, to yourself, and to another human being the exact nature of your wrongs.

Silly! You did nothing wrong in the context of oil use. It was wrong of our president to tell us we’re addicted to oil.

Step 6. We’re entirely ready to have God remove all these defects of character.

Asinine! Your use of oil does not represent a defect of character.

Step 7. Humbly ask God to remove your shortcomings.

Good advice, but remember that your use of oil is not a shortcoming.

Step 8. Make a list of all persons you’ve harmed, and become willing to make amends to them all.

Don’t feel guilty for your past use of oil, it was thrust upon you.

Step 9. Make amends to such people whenever possible.

You harmed no one, and therefore need not make amends.

Step 10. Continue to take personal inventory, and admit when you’re wrong.

Good advice, but don’t list your use of oil as a wrong.

Step 11. Improve your conscious contact with God.

Good advice, but remember that God doesn’t solve your problems; you do that with God’s help.

Step 12. Practice these principles in your affairs.

You’re not addicted to oil no matter who says you are, and you don’t need a twelve-step program. Use your time and talents to make better use of the resources you have, and don’t expect God or anyone else to do it for you. Someday we’ll have leaders who will actually work with us to solve problems, instead of calling us “addicts”, but for now we’re just going to have to rely on our own efforts. God bless you, keep up the good work, and don’t listen to those who say you’re an addict. God gave us a limited supply of oil, and we could have used it more responsibly. More than anyone else, this was the fault of our leaders. If we’re “addicts” in our president’s mind, then he’s the “dealer”. He himself may need a 12-Step program, but we don’t.

John

Monday, April 07, 2008

You'll Buy an Electric Car Someday - You'll Charge it!

Has anyone else noticed how expensive gasoline is these days? Ten years ago a gallon of gas could be bought for under $1.00. Gasoline hit the $2.00 mark in 2004, and we were paying $3.00 per gallon in 2006. Now it looks like gas might hit $4.00 per gallon before the end of this year. If this trend continues, we’ll be paying $6.00 per gallon in 2012. Car manufactures are taking notice of this, and several have electric cars in the works.

Since the days of cheap gasoline seem to be gone forever, a sudden shift to electric cars is inevitable. With the automotive industry already working on electric cars, and battery manufacturers competing to see who can make the best batteries, we’re well on our way. The first generation of electric cars will be equipped with a small gasoline engine, included to extend the range of the car. These are called plug-in-hybrid-electric-vehicles, or PHEV’s. And while the PHEV is a great intermediate step, the gasoline engine will eventually be eliminated altogether. Quick charging batteries, and the emergence of battery charging stations, will make that possible.

It looks as if the transition to electric cars will be more of a landslide than a trickle, a scenario that will create some problems. The electric grid, which is already strained in some parts of the country, may not be able to handle the additional load of charging all of these vehicles. Fortunately, most of these electric cars will be charged at night, when other demands on the grid are low. V2G technology (cars that supply power to the grid during the day), will help, but infrastructure upgrades are needed before that can happen. We’ll pay for improvements, and for the upgrades needed for the implementation of V2G technology, through higher electric rates.

Another problem created by a sudden shift to electric cars is that there will be less money available for highway maintenance. Federal and state taxes on gasoline pay for road improvements, bridges, and maintenance. A sudden switch to electric transportation will reduce gasoline tax revenue, and it’s likely that we’ll be required to pay our share of road-usage taxes in some other way. If you use 25 gallons of gas per month, enough to drive about 500 miles, you’re paying about $150.00 per year in road-use taxes. Many of us are paying much more than that. To make up for the loss, we might see additional taxes on our electric bill, but that isn’t the best solution. There is no easy way of determining how much electricity is used for charging our car(s), and how much is ordinary household use. It’s likely that we’ll calculate our share of road-use tax via our state and federal income tax forms. Tax forms will include questions designed to determine how much electricity we use for charging our electric car(s).

The sudden need for more electricity does more than just strain the electrical grid, it means that coal-fired power plants will burn more coal. This will drive up the cost of coal, and you’ll pay for that on your electric bill. Any way you look at it you’re going to have to pay for electricity at an ever-increasing rate, and you’ll soon be taxed for the electricity you use at a much higher rate than you’re paying now. Just as gasoline prices have skyrocketed in recent times, the days of cheap electricity will end as well.

What can you do about it? I’m glad you asked!

Most of the country pays about ten cents per kilowatt hour for electricity now, making it possible to charge an electric vehicle for less than $1.00 per night. You’ll be able to drive 40 miles or more on an overnight charge, instead of burning five to eight dollars worth gasoline at today’s prices. What a deal! But with the likelihood that electric rates will soon mimic the steep increase of gasoline prices, it would be wise to consider other options. For many, a solar electric (PV) system is a great way to deal with the expense of, and problems related to, a sudden switch to electric transportation. It seems that those who already drive electric cars are aware of this, since 50% of them also use solar electric systems.

Off-grid or Grid-tied?

A grid-tied PV system may be the best choice for those served by a robust electrical grid. Electricity is fed into the grid during the day, offsetting electricity pulled from the grid at night. With a large enough system, the user contributes more than he withdraws, and therefore pays nothing for electricity. An off-grid PV system may be the best choice for those with marginal electric service, but system inefficiencies and the added cost of batteries will result in a much higher system cost.

Size matters:

While it’s alright to start out small, it’s going to take a substantial PV system to charge an electric car’s battery bank. GM’s Volt PHEV can be charged via a 110 volt standard home outlet, and a full charge will take 6 ½ hours. I suspect that the charge current will exceed 10 amps, or about 1100 watts, representing a pretty hefty load on a PV system. A 2kw grid-tied system will produce enough electricity (on sunny days) to offset the charging power supplied by the grid at night, but an off-grid system will need to be substantially larger than that in order to compensate for system inefficiencies. If you opt for an off-grid system, and if you’re able to charge your PHEV during the day, you’ll achieve efficiencies similar to those who implement a grid-tied system. An off-grid PV system operates much more efficiently when power flows directly from the solar panels to the load, instead of temporarily storing that power in PV system batteries and retrieving it later. Another thing to consider is that a two-car family will need a PV system twice as large as a one-car family. Still, you can start out with a small system that will generate a portion of your needs, and upgrade later.

PV system cost vs. savings:

As you do your homework you might be shocked by the high cost of a PV system, but don’t forget to do the math. By switching from a gas-powered car to electric, you might be eliminating $3600.00 worth of gasoline per year from your budget. If you apply those savings toward the purchase of a PV system, the payback period will be 2 to 5 years. And better yet, you’ll be driving on FREE power from the sun once your solar equipment is paid for. Any economist, I suspect, would call that a good investment.

Something else to consider:

Once your PV system is in place, you’ll use it as much as possible to charge your PHEV. During times when the sun doesn’t shine, you’ll need to charge your PHEV in some other way. For most people, that other way will be the power grid. This will be the best option as long as electric rates remain reasonable. Charging can be done by wind power, micro hydro, or even a bio-fueled generator after that.

A bonus:

If you don’t drive much on the weekends, you’ll have a surplus of electricity for household use at a time when you’ll need it most.

Conclusion

Like the invention of radio, TV, and the personal computer, the plug-in electric car appears to be the next great invention that will change the way we live. The sudden switch from gas to electricity will trigger an increase in the price we pay for electricity, but those who use PV for some or all of their needs will suffer the least. The surge in the cost of electricity will result in a greater demand for solar panels and equipment, leading to shortages and price increases. To avoid dealing with those shortages and price increases, now is the time to install solar electric panels and systems. And as an added bonus, the massive shift away from internal combustion engines, combined with an increased use of solar panels, will have a positive affect on the quality of our air. You gotta love that!

How will you charge your electric car?

With a credit card of course.

John

Friday, February 15, 2008

Dealing with the Energy Crisis

Alternative energy research tends to produce interesting, but useless information. Do you really care how much of the sun’s energy falls on one square meter of land on any given day? Do you benefit by knowing how much electricity is needed to power Chicago? David MacKay, University of Cambridge Physics Professor, is one source of information of this nature. For the most part it’s interesting, but not really helpful. David did get my attention with a couple of statements: “…the people of the developed world are living immorally, and a huge crisis is upon us, unless we change our lifestyle.” I don’t know if we’re living immorally, but it’s hard to deny that an energy crisis exists, and that it’s getting worse.

How did we get into this mess?

Most of the electricity produced in the United States comes from coal-fired power plants. Since coal has always been plentiful and inexpensive, electric rates have been reasonable. Most people spend less than 2% of their household income on electricity, and as a result of its low cost, we tend to waste a lot of it. We use electric doorbells when we could be using mechanical ones. We have electric can openers, hand-lotion warmers, air-fresheners, and many other unnecessary items. In addition to the wasteful items we use by choice, many wasteful items are forced upon us because of a lack of availability of energy-efficient alternatives. Many of our electrical devices use energy even when they’re turned off. These are known as “phantom loads”, and they’re more wasteful than most people realize. Because a device appears to be off, we’re not always aware that it is wasting energy.

How do we correct the problem?

Because our lifestyle includes so many wasteful gadgets, there are many corrective actions we can take. Begin with an energy audit of your home. You’re likely to find some no-cost energy-saving measures you can take that will not adversely affect the quality of your life. Do you really need that plug-in air freshener or hand-lotion warmer? You probably already have surge protectors on your TV’s and stereo equipment. If you use the switch on the surge protector, instead of the remote-control unit for on/off control of your TV, you’ll eliminate a phantom load. Check all of your AC outlets, and remove all unused wall-warts (transformers).

Next, you might want to spend a few dollars on things that will end up costing you nothing by virtue of the savings you’ll see on your electric bill. Replacing incandescent light bulbs with compact fluorescent bulbs is a good example. And why not replace your clock-radio with a wind-up alarm clock? Having done those things, it’s time to move on to larger items. Maybe it’s time to replace that old refrigerator with an energy-star-rated model. You might cut $20.00 per month off of your electric bill if you do. And isn’t it time to replace that big old TV in the den with a new 42” plasma model? In doing so you might go from 300-Watts to 100-Watts. You’ll get three hours of TV viewing for the price of one hour. The savings really add up at the end of the month.

After doing all of those things, you might consider geothermal heating and cooling, and solar hot water heating. I use a corn-burning stove to supplement my natural gas heating. Burning corn is a little more work, but it reduces my heating bill significantly. Check with a reliable contractor to see if any of these strategies will benefit you.

How much are you willing to sacrifice?

Once you’ve done all you can to reduce consumption, and perhaps made energy-efficiency improvements to your home, you then need to decide just how far you’re willing to cut back. It’s easy to say “I’ll turn my thermostat down” when the weather is mild, but will you really do it when you’re shivering in the coldest winter months? Will you also cut back significantly on air-conditioning? Be honest with yourself. If it seems like too much of a sacrifice, remind yourself of the negative effects of excessive energy consumption. Cutting back benefits you, your children, and the entire planet.

It’s unlikely that you’ll be able to make all of these changes at once. Do some research and come up with a game plan, and a consumption rate to shoot for. Check the energy-star tags on appliances you intend to buy. Look at your electric bill. If you’re currently averaging 900kwh of electricity per month, that’s a lot. Try to cut it in half. If you’re using 500kwh of electricity per month, try to cut it by at least 25%.

As you work on your plan you’re likely to discover energy-saving lifestyle changes that actually enhance the quality of your life instead of detracting from it. I’ve found it much more pleasant to turn my thermostat down and use an electric blanket in a cool bedroom. An inexpensive Kill-A-Watt meter helps me determine how much I’m saving.

Beyond conservation

After you’ve reduced consumption, the cost of a solar photovoltaic, wind, or a hybrid electric system won’t be so daunting. If you’re not ready to disconnect from the grid entirely, you can install a small system that meets a portion of your needs. If you choose to start small, employ a strategy that helps you get the most out of your system. Solar equipment that is unused, or underused, is counterproductive. Everything you’ll need to automate your system for maximum efficiency is available, and at a reasonable cost.

Expensive gasoline – The other part of the energy crisis

Having a solar electric system in place not only contributes to your independence from the power company, it’s the first step toward gasoline independence. Plug-in-hybrid-electric-vehicles (PHEV’s) will start to show up in dealer showrooms in the year 2010. By charging your car with power from your photovoltaic system, you’ll be driving on free power from the sun instead of expensive gasoline. It’s going to take a substantial system to do the charging, so now would be a good time to get started.

Renewables – No War Required

By purchasing less oil from Middle Eastern countries we not only reduce the amount of money that they have available for war, we eliminate our need to be there in the first place. Since the politicians won’t stop it, it’s up to each of us to lead the way.

When the people lead, leaders follow. Let’s roll!

John

Friday, February 08, 2008

Electricity Use - Survey Results

Good Job!

Looking over the electricity use survey, it’s good to see that so many of us are at the low-end of the scale. While we Americans are often criticized for over-consumption, it’s obvious that many of us don’t deserve it. For the most part it’s our leadership that has failed, not the American people. President Bush’s message “America is addicted to oil” strikes me as a shameful attempt to shift the blame from his inept and corrupt administration to the American people. We should expect our government to recognize problems and provide better solutions, but clearly they’ve let us down. Too much federal money supports oil and coal interests, while little goes to renewable energy projects. I’m tired of politicians who claim to care, but don’t act as if they do.

Your Accomplishment

Your efforts to conserve electricity, and your interest in renewable energy technologies, show that you care. Because of your efforts, the world is less polluted, and what remains of the earth’s fossil fuels will last a little longer. People may notice your PV panels, or your windmill, but they probably don’t give much thought to how much your efforts contribute to the quality of their lives.

Your Reward

The decline of fossil fuels will lead to electricity shortages, which will lead to laws restricting the use of electricity. Energy use restrictions will not apply to those who generate their own. Instead of a shortage, you’re likely to have a surplus of electricity from time to time. If you’re feeding that back into the grid, you’ll be compensated financially. If not, you can use that electricity in any way you wish, and think of it as “guilt-free” electricity.

Why we’re Ignored

We use bio-fueled stoves, windmills, PV panels, solar hot water heaters, and a number of other environmentally friendly systems. We talk about our projects with those doing similar things, but seldom with others. Mostly, we’re just ignored. Some are reluctant to discuss renewable energy because they don’t understand the technology, but others shy away from the topic out of feelings of guilt. After all, they see you and I doing much more than they are doing.

Promoting Renewable Energy

While it might be tempting to flaunt a “greener-than-thou” attitude, it’s important to know that successful movements are not powered by guilt, they’re the result of confidence and passion. Be patient, and nonjudgmental, but don’t expect to convert everyone you see. There will always be those who don’t care about anyone or anything but their own selfish interests, and there will always be those who have discretionary income but no discretion.

Conclusion

Pat yourself on the back, enjoy some guilt-free consumption, and get back to work! The world needs you, and is better off because of you.

sj

Monday, January 28, 2008

Photovoltaic Systems and Politics

Each of us has his/her own reason for implementing a solar photovoltaic (PV) system. A solar PV system is a practical solution for those not served by a utility company. Some of us implement alternative electric systems because we want to cut our electric bill, or because we like the idea of “green” living. Many of us implement small PV systems because we expect weather-related power outages, or because of an unreliable electric service provider.

Whatever your reason for using alternative energy, you’ve chosen to invest your time and money in a responsible way. As the 2008 election approaches, this would be a good time to consider which of the candidates would be the best choice for those of us who choose to act in such a responsible manner. Maybe the following stories will help you decide:

Ant & the Grasshopper

Two Different Versions! Two different Morals!

OLD VERSION: The ant works hard in the withering heat all summer long, building his house and laying up supplies for the winter.

The grasshopper thinks the ant is a fool and laughs and dances and plays the summer away. Come winter, the ant is warm and well fed.

The grasshopper has no food or shelter, so he dies out in the cold.

MORAL OF THE STORY: Be responsible for yourself!

-------------------------------------------

MODERN VERSION:

The ant works hard in the withering heat all summer long, building his
house and laying up supplies for the winter.

The grasshopper thinks the ant is a fool and laughs and dances and plays the summer away.

Come winter, the shivering grasshopper calls a press conference and demands
to know why the ant should be allowed to be warm and well fed while others are cold and starving.

CBS, NBC, PBS, CNN, and ABC show up to provide pictures of the shivering grasshopper next to a video of the ant in his comfortable home with a table
filled with food. America is stunned by the sharp contrast.

How can this be, that in a country of such wealth, this poor grasshopper is allowed to suffer so ?

Kermit the Frog appears on Oprah with the grasshopper, and everybody cries when they sing, 'It's Not Easy Being green.'

Jesse Jackson stages a demonstration in front of the ant's house where the news stations film the group singing, 'We shall overcome.' Jesse then has the group kneel down to pray to God for the grasshopper's sake.

Nancy Pelosi & John Kerry exclaim in an interview with Larry King that the ant has gotten rich off the back of the grasshopper, and both call for an immediate tax hike on the ant to make him pay his fair share.

Finally, the EEOC drafts the Economic Equity & Anti-Grasshopper Act retroactive to the beginning of the summer.

The ant is fined for failing to hire a proportionate number of green bugs and, having nothing left to pay his retroactive taxes, his home is confiscated by the government.

Hillary gets her old law firm to represent the grasshopper in a defamation suit against the ant, and the case is tried before a panel of federal judges that Bill Clinton appointed from a list of single-parent welfare recipients.

The ant loses the case.

The story ends as we see the grasshopper finishing up the last bits of the ant's food while the government house he is in, which just happens to be
the ant's old house, crumbles around him because he doesn't maintain it.

The ant has disappeared in the snow.

The grasshopper is found dead in a drug related incident and the house, now abandoned, is taken over by a gang of spiders who terrorize the once
peaceful neighborhood.

MORAL OF THE STORY: Be careful how you vote in 2008

- - Thanks JA for this story. sj

Monday, October 01, 2007

Off-Grid vs. Grid-Tied, My Survey

By more than a two to one margin, visitors to my blog prefer grid-tied over off-grid. This came as somewhat of a surprise to me. I expected more people to opt for off-grid. I thought that being self-sufficient and having a reliable source of electricity would have steered more folks toward an off-grid system. I chose off-grid because of budget constraints, and because of an unreliable grid. I was able to build a “starter” system on a small budget, and as a result I have a limited amount of power when the grid is down. My goals were; to avoid being in the dark, to have the capability to keep warm in the winter and cool in the summer, to keep food from spoiling, and to have the limited use of other appliances. I’ve already met those goals to a certain extent. My small system can’t keep up during temperature extremes or during extended periods of cloud cover, but its benefits are impressive nevertheless when considering the size of my investment. And it’s always exciting when I upgrade the system and extend its capabilities. (I don’t know how I’d amuse myself if I were rich).

If money were no object, I’d opt for a grid-tied system with batteries. While such a system provides the best of both worlds, it is also the most costly. A grid-tied system with batteries must be able to automatically disconnect from the electrical grid when the power fails. If not, it could be dangerous for utility workers in the area. As a major advantage of such a system, it uses all of the free-power available, only switching to costly grid-supplied power as a last resort. Switching is automatic, based on setup parameters. The system can be set to be very gentle on the batteries, extending their life, or be set to use them to a greater extent, resulting in a lower electric bill. It must be great to have choices like that!

I think it’s reasonable to assume that while grid reliability problems may increase in the future, the grid is never going to disappear completely. As long as it is there part of the time, those attached can take from it and contribute to it. And those who supply power to the grid are paid, or at least credited, for their contributions. So unless electric rates or grid-connection charges are prohibitively high, being grid-tied makes more sense from a financial standpoint than an off-grid system does. And since an off-grid system with batteries efficiently uses the energy generated by the sun, it’s a good “green” choice.

While a batteryless grid-tied system is efficient and cost-effective, it must be embarrassing to have a large PV array, but no power when the grid goes down. What would the neighbors think? Still, this type of system is the best “green” choice, and it requires the least maintenance. On the other hand, I like my independence. If I could disconnect from the grid completely, I’d do it, even though that is not the most economical way to go. Unused power is wasted, so it’s a challenge to use as much of it as possible, while not stressing my batteries. I like the idea of using free energy from the sun, and not from a coal-burning power plant. I’m being kind to the planet, and preserving natural resources for future generations. Perhaps even more importantly, I’m setting a good example. Some things are more important than saving money.

John

Monday, August 20, 2007

Rethinking Solar Power (PV) for Your Home

When considering a solar photovoltaic (PV) system for your home, the first step is to reduce your energy needs by making your home more energy efficient. Improvements might include an upgrade to energy efficient windows and doors, the addition of insulation, and the replacement of older appliances and inefficient lighting. Because these improvements reduce your energy needs, you’ll be able to reduce the size of your PV system and save money. Unfortunately, the overall costs of the improvements, when added to the cost of the PV system, may be more than you want to spend. Instead of discarding the idea entirely, why not consider a small to mid-size system. At least make a thoughtful evaluation of the benefits of a scaled-down system versus its cost before making a decision.

Generally speaking, there are three reasons for considering an alternative to the power supplied by your electric company; saving money, environmental concerns, and reliability issues.

The monetary concern is self-explanatory, everyone likes a bargain. Electric service is available at a reasonable rate for most of us, but not for everyone. In areas where electric rates are excessive, alternatives to grid-supplied electricity make financial sense. A grid-tied system is usually the best choice for those wanting to cut their electric bill, but you can also benefit from a small, and therefore less-costly, off-grid system.

Environmental concerns may mean a desire to use a non-polluting source of power, or a passion to preserve natural resources for future generations. Since the majority of the electricity produced in the United States comes from coal-fired power plants, your decision not to use electricity that originates at those power plants goes a long way toward reducing pollution. From the mine to the fire, coal pollutes every step of the way. Subsidence, contamination of ground water, and even the tragic death of mine workers remind us of the true cost of using coal.

Reliability is more important to some of us than it is to others. Most of us can tolerate a few hours, or even days, without power, but an extended loss of power can be life-threatening to some. Just losing the ability to make an emergency phone call can be dangerous. Climate control is not only important for your safety and comfort, temperature extremes can result in damage to your home. And don’t forget about food spoilage when there’s no electricity to run the refrigerator and freezer.

If you’ve decided to install a PV system for the purpose of saving money, first make reasonable energy-saving improvements to your home. Then size the system so that it produces a little more than your total energy needs. If space constraints or your budget won’t allow you to do that, your next best option is to install the largest system possible. If you’re billed for electricity on a tiered rate, perhaps you can install a PV system large enough to keep your grid-supplied electricity usage within the lowest tier. A sophisticated controller switches between alternative power and grid power in a way that optimizes system performance.

If reliability is the reason for installing a PV system, first consider the electrical needs that you can’t live without. If you live in a cold climate, the greatest need will probably be during the winter months. For home heating you might consider a wood-burning stove or fireplace. A heat exchanger, or even a portable fan, will help to distribute heat to other parts of the house. As an alternative to wood, you might consider a pellet or corn-burning stove. Both require electricity for their operation, but those needs can easily be met by a small PV system. Your summer needs might include cooling, but don’t plan to run a central air conditioning system with your small PV system. You might choose a window air conditioner if your PV system is big enough to handle it, or simply use fans for cooling. Your goal should be to keep at least one room comfortable in the event of a power outage.

When sizing your system (with your budget in mind), don’t forget about your other needs. You should consider a system big enough to power a chest freezer to keep food from spoiling, and to power a microwave oven. The microwave oven not only makes it possible to prepare meals, but also to boil water for drinking should that become necessary. Remember, one of your reasons for installing the PV system is to serve as an emergency source of power. Don’t underestimate your needs in the event of a disaster.

An advantage of making your system large enough to supply power during worst-case conditions is that you’ll have an abundance of power at other times. If you’ve sized your system to get you through power outages during harsh weather, power outages during mild weather are no problem at all. You’ll be able to watch TV, make phone calls, prepare meals, keep food from spoiling, etc. Trust me; it’s a good feeling to light up your house at night when your neighbors are using candles. But don’t be cruel; invite them over for a hot meal and to watch TV.

Using alternative power doesn’t mean that you have to be uncomfortable, but it is important to recognize the limits of your system. If family members practice conservation, you may be able to disconnect from the utility grid entirely when the weather is mild. It’s good to see the disk in the electric meter stop turning. Practices like turning off lights and other devices when they’re not in use will help to ensure a steady, uninterrupted source of power. If you’ve chosen to install an undersized system with plans to upgrade in the future, your good conservation habits will be beneficial later, as your system grows. If your children complain about the limited power your system provides, remind them what life would be like without it.

Some say that there are better ways to spend your money. A generator with an ample fuel supply may appear to be a better alternative. A generator is less expensive than even a small PV system. However, the fuel to run the generator needs to be fresh, and enough of it stored to get you through an extended power outage. The cost for fuel to keep the generator running can exceed the cost of a PV system in a short time. Some New Orleans residents reported generator fuel bills exceeding $900.00 per months after the Katrina disaster. A generator is good for a short-term power outage, but you’ll quickly grow tired of the noise, and refueling chores. Remember also that fuel may not be available locally in the event of a disaster. On the other hand, your solar panels provide quiet and steady power which is renewed each day by the sun.

The recommended way to design a PV system is to first calculate your energy needs. Instead of that approach, why not calculate how much energy you can get from a system that falls within your budget. For under $1000.00 you can build a system that will give you light, recharge your cell phone batteries and power a radio, but not much more. For another $1000.00 you can add some TV viewing, a fan, and other low-power appliances for a short duration. For a little more you can keep a small refrigerator or chest freezer running to protect your food from spoiling, use a microwave oven, and keep warm in the winter. You can live comfortably through an extended power outage with a relatively modest system. Start small if you must, and add to the system as additional funds become available. While you’re saving money on your electric bill, you can be proud that your efforts help to reduce pollution and preserve natural resources.

Be sure to check this blog's archives for additonal information.

sj

Monday, July 16, 2007

Inventions That Change the Way we Live

It’s easy to name inventions that have changed our lives. The electric light, radio, and television are among the most notable, and the personal computer is among the most recent. It seems that each of these devices appeared suddenly, but they were actually perfected over time. With that in mind, it’s interesting to contemplate life-changing devices on the horizon.

We may eventually look back and realize that the photovoltaic panel (PV) was the life-changing invention of the present time. While solar photovoltaic panels were once only used in the space program, now they can be found almost anywhere around the world. They not only provide power for lights, they provide the energy needed to pump water for people, as well as for cattle, in locations far from power lines. Thanks to PV panels, remote villages and vacation homes can use the same electrical appliances that city-dwellers use. And now, as electric rates are increasing and reliability is an issue in some parts of the country, many grid-connected homeowners are also installing solar panels.

Some utilities have imposed a tiered-rate structure for electrical usage. While the first 300KWH per month is relatively inexpensive, electricity use in excess of 600KWH is billed at a much higher rate. A PV system can be designed to use solar power as the primary source of electricity, only using grid-supplied power when the PV system’s capacity is exceeded. Switching is automatic, and the homeowner may not even be aware that it has happened. Other sophisticated PV system components protect the batteries from over charging or over discharging, and coax the best possible performance from the system.

Fossil fuel supplies are on the decline, resulting in escalating costs to bring electricity into our homes, but there are other factors that are beginning to make PV systems more appealing to the average household. Newer consumer electrical devices require less power than their older counterparts, making it possible to get by with a smaller PV system. From light-bulbs to major appliances, it’s rare to find an increase in electrical consumption in a newer device. The exception to this rule is the plug-in-electric vehicle. If these become popular in the future, we’ll need sufficient capacity to charge them. Still, the cost of PV panels is expected to decline sharply within the next two years, further increasing their popularity.

The PV panel is not like other life-changing inventions, it simply provides power for them. And, unlike other life-changing inventions, we usually keep solar panels out of sight, rather than on display. As we transition to PV systems, our lives may not have been altered per-se, but without PV all of our electrical devices will be useless, or to costly to use.

President Bush said recently “we’re addicted to oil.” The truth is, were addicted not to oil, but to our cars. By the same token we’re not addicted to electricity, but rather to our lights, radios, TV’s, microwave ovens, dishwashers, and other appliances. And it’s hard to imagine how tradesmen would perform without their power tools and equipment. Because a transition to PV will be gradual, we may not recognize it as a life-changing invention until when we think of what life would be like without it.

John

Monday, June 11, 2007

What to Expect from a Midsize PV System

As I continue to add to my PV system, I look forward to the day when I can stop describing it as small. My short-term goal is a system large enough to get me comfortably through an extended power-outage, and lower my electric bills all-year-long. Perhaps someday I can disconnect from the grid entirely, but that’s a long-term goal. Nevertheless, my system becomes more useful with each upgrade. With these things in mind, it’s interesting to take a closer look at the system I hope to have in the not-too-distant future.

I Have:

4 – 85 Watt Solar Panels
1 – Morningstar SunSaver 20 Charge Controller
4 – 105ah Deep Cycle Marine Batteries
1 – 1100 Watt Exeltech DC to AC Sine Wave Inverter

I Want:

8 – 85 Watt Solar Panels
1 – Morningstar TriStar TS-60 Charge Controller with meter
4 – S530 Rolls 6v 400ah Batteries
1 – Xantrex 2500 Watt Sine Wave Inverter

Additional items include mounting hardware, wire, a lightning protection device, fuses, and perhaps a breaker box or combiner. I hope to become grid-tied eventually, but I’ll avoid that discussion at the present time for the sake of simplicity. To examine the capabilities of the system I hope to have, let’s start with the solar panels.

Under ideal conditions, the eight panels will generate 680 watts. A somewhat more realistic estimate would be 600 watts for 4 hours per day in my geographical location, or a daily production of 2400 watt/hours. This, of course, will vary from day to day and season to season. Next, let’s look at the battery bank.

Because I've selected six-volt batteries, I'll connect the four of them in series to create a 24-volt system. As a result of using batteries better suited for solar power systems, and by changing from a 12-volt system to a 24-volt system, I'll expect a performance increase.

Since the solar panel array is able to produce 2400 watt/hours per day, it follows that a constant 100 watt load would fully use the solar-produced power. Stated another way; 2400 watt/hours divided by 24 hours equals 100 watts per hour. To allow for conversion losses, we’ll assume that only 85 watts is available on a continuous basis. That brings our daily total to 85 times 24 hours, or 2040 watt/hours per day. This power can go a long way if it’s used wisely. This is how I might use the available power during a grid-power failure:

3 – 13 watt cf bulbs – 39 watts – 4 hours per day = 156 watt/hours per day
2 – 19 watt cf bulbs – 38 watts – 2 hours per day = 76 watt/hours per day
1 – Chest-type freezer – 34 watts (avg) – 24 hours per day = 816 watt/hours per day
1 – Radio – 5 watts – 4 hours per day = 20 watt/hours per day
1 – Portable Color TV – 60 watts – 2 hours per day = 120 watt/hours per day
1 – VCR or DVD player – 40 watts – 2 hours per day = 80 watt/hours per day
1 – Fan – 25 watts – 4 hours per day = 100 watt/hours per day
1 – Microwave oven – 1000 watts – 0.20 hours per day = 200 watt/hours per day
1 – Toaster – 850 watts – 0.10 hours per day = 85 watt/hours per day
1 – Vacuum cleaner – 750 watts – 0.20 hours per day = 150 watt/hours per day
1 – Blow dryer – 1000 watts – 0.10 hours per day = 100 watt/hours per day
1 – Laptop Computer – 25 watts – 3 hours per day = 75 watt/hours per day
1 – Cell phone charger – 25 watts – 1 hour per day = 25 watt/hours per day

Alternatively, I can use power from this system to run the motors in my corn-burning stove. Should a grid power failure occur when outside temperatures are low, I’ll gladly opt for heat, instead of using other appliances on the list. I might also use more of the available power for fans to keep cool in the summer. During mild weather, when I don’t need extra heating or cooling, the surplus power can be applied to more frivolous uses. Remember, this modest system was not designed to meet the electrical needs of the average American home.

The Xantrex inverter upgrade offers several advantages:

1. Its higher capacity allows me to run heavier loads, and to run several devices at the same time. I should be able to charge my PHEV (plug in electric hybrid vehicle) with it. My Exeltech inverter has trouble powering devices like my washing machine, and would probably be inadequate for recharging the PHEV.

2. The Xantrex inverter can be set to use power from the PV system until battery voltage drops to a preset level, and then switch to utility power. This allows me to get the most from my PV system while protecting my batteries from over-discharging, and minimizes my grid-supplied electrical consumption.

3. The Xantrex inverter will be connected to my existing home wiring, and can automatically take over in the event of a grid power failure. Eliminating the need to run extension cords when the grid power fails is a bonus.

Because I'll be adding solar panels, and because I'll be changing from a 12-volt system to a 24-volt system, I'll need to replace my present charge controller. The Morningstar TriStar TS-60 meets all of my requirements, and it allows me to better control battery charging. The digital meter option not only measures array and battery voltage, it displays additonal system information not currently available. I'll also be able to remotely monitor system statistics via the Internet.

An off-grid home or cabin with a PV system of this size would probably have a gas-powered refrigerator and stove, and additional capacity will be needed to accommodate appliances such as a clothes washer and dryer. While this system may not seem to provide a lot of power for its cost (about $6500), imagine what life would be like without it.

John